首页> 外文OA文献 >Portfolio Management Using Artificial Trading Systems Based on Technical Analysis
【2h】

Portfolio Management Using Artificial Trading Systems Based on Technical Analysis

机译:基于技术分析的人工交易系统投资组合管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Evolutionary algorithms consist of several heuristics able to solve optimization tasks by\udimitating some aspects of natural evolution. In the field of computational finance, this type of\udprocedures, combined with neural networks, swarm intelligence, fuzzy systems and machine\udlearning has been successfully applied to a variety of problems, such as the prediction of stock\udprice movements and the optimal allocation of funds in a portfolio.\udNowadays, there is an increasing interest among computer scientists to solve these issues\udconcurrently by defining automatic trading strategies based on artificial expert systems,\udtechnical analysis and fundamental and economic information. The objective is to develop\udprocedures able, from one hand, to mimic the practitioners behavior and, from the other, to\udbeat the market. In this sense, Fernandez-Rodríguez et al. (2005) investigate the profitability\udof the generalized moving average trading rule for the General Index of Madrid Stock Market\udby optimizing parameter values with a genetic algorithm. They conclude that the optimized\udtrading rules are superior to a risk-adjusted buy-and-hold strategy if the transaction costs\udare reasonable. Similarly, Papadamou & Stephanides (2007) present the GATradeTool, a\udparameter optimization tool based on genetic algorithms for technical trading rules. In the\uddescription of this software, they compare it with other commonly used, non-adaptive tools in\udterms of stability of the returns and computational costs. Results of the tests on the historical\uddata of a UBS fund show that GATradeTool outperforms the other tools. Fernández-Blanco\udet al. (2008) propose to use the moving average convergence divergence technical indicator\udto predict stock indices by optimizing its parameters with a genetic algorithm. Experimental\udresults for the Dow Jones Industrial Average index confirm the capability of evolutionary\udalgorithms to improve technical indicators with respect to the classical configurations adopted\udby practitioners.\udAn alternative approach to generate technical trading systems for stock timing that combines\udmachine learning paradigms and a variable length string multi-objective genetic algorithm\udis proposed in Kaucic (2010). The most informative technical indicators are selected by\udthe genetic algorithm and combined into a unique trading signal by a learning method. A\udstatic single-position automated day trading strategy between the S&P 500 Composite Index\udand the 3-months Treasury Bill is analyzed in three market phases, up-trend, down-trend\udand sideways-movements, covering the period 2000-2006. The results indicate that the near-optimal set of rules varies among market phases but presents stable results and is able to\udreduce or eliminate losses in down-trend periods.\udAs a natural consequence of these studies, evolutionary algorithms may constitute a\udpromising tool also for portfolio strategies involving more than two stocks. In the field of\udportfolio selection, Markowitz and Sharpe models are frequently used as a task for genetic\udalgorithm optimization. For instance, the problem of finding the efficient frontier associated\udwith the standard mean-variance portfolio is tackled by Chang et al. (2000). They extend\udthe standard model to include cardinality and composition constraints by applying three\udheuristic algorithms based upon genetic algorithms, tabu search and simulated annealing.\udComputational results are presented for five data sets involving up to 225 assets.\udWilding (2003) proposes a hybrid procedure for portfolio management based on factor\udmodels, allowing constraints on the number of trades and securities. A genetic algorithm\udis responsible for selecting the best subset of securities that appears in the final solution, while\uda quadratic programming routine determines the utility value for that subset. Experiments\udshow the ability of this approach to generate portfolios highly able to track an index.\udThe β − G genetic portfolio algorithm proposed by Oh et al. (2006) selects stocks based on\udtheir market capitalization and optimizes their weights in terms of portfolio β’s standard\uddeviation. The performance of this procedure depends on market volatility and tends to\udregister outstanding performance for short-term applications.\udThe approach I consider for portfolio management is quite different from the previous models\udand is based on technical analysis. In general, portfolio optimizations using technical analysis\udare modular procedures where a module employs a set of rules based on technical indicators\udin order to classify the assets in the market, while another module concentrates on generating\udand managing portfolio over time (for a detailed presentation of the subject, the interested\udreader may refer to Jasemi et al. (2011)). An interesting application in this context is the approach developed by Korczak & Lipinski\ud(2003) that leads to the optimization of portfolio structures by making use of artificial trading\udexperts, previously discovered by a genetic algorithm (see Korczak & Roger (2002)), and\udevolutionary strategies. The approach has been tested using data from the Paris Stock\udExchange. The profits obtained by this algorithm are higher than those of the buy-and-hold\udstrategy.\udRecently, Ghandar et al. (2009) describe a two-modules interacting procedure where a genetic\udalgorithm optimizes a set of fuzzy technical trading rules according to market conditions and\udinteracts with a portfolio strategy based on stock ranking and cardinality constraints. They\udintroduce several performance metrics to compare their portfolios with the Australian Stock\udExchange index, showing greater returns and lower volatility.\udAn alternative multi-modular approach has been developed by Gorgulho et al. (2011) that\udaims to manage a financial portfolio by using technical analysis indicators optimized by a\udgenetic algorithm. In order to validate the solutions, authors compare the designed strategy\udagainst the market itself, the buy-and-hold and a purely random strategy, under distinct\udmarket conditions. The results are promising since the approach outperforms the competitors.\udAs the previous examples demonstrate, the technical module occupies, in general, a\udsubordinate position relative to the management component. Since transaction costs, cardinality and composition constraints are of primary importance for the rebalancing\udpurpose, the effective impact of technical signals in the development of optimal portfolios\udis not clear. To highlight the benefits of using technical analysis in portfolio management,\udI propose an alternative genetic optimization heuristic, based on an equally weighted zero\udinvestment strategy, where funds are equally divided among the stocks of a long portfolio\udand the stocks of a short one. Doing so, the trading signals directly influence the portfolio\udconstruction. Moreover, I implement three types of portfolio generation models according to\udthe risk-adjusted measure considered as the objective, in order to study the relation between\udportfolio risk and market condition changes.\udThe remainder of the chapter is organized as follows. Section 2 explains in detail the proposed\udmethod, focusing on the investment strategy, the definitions of the technical indicators and\udthe evolutionary learning algorithm adopted. Section 3 presents the experimental results and\uddiscussions. Finally, Section 4 concludes the chapter with some remarks and ideas for future\udimprovements.
机译:进化算法由几种启发式算法组成,能够通过\排除自然进化的某些方面来解决优化任务。在计算财务领域,这种\非过程,结合神经网络,群体智能,模糊系统和机器\学习已经成功地应用于各种问题,例如股票\价格走势的预测和最优分配。 \ ud如今,计算机科学家对解决这些问题的兴趣日益增加。\ uds目前通过定义基于人工专家系统,\ udtechnic技术分析以及基本和经济信息的自动交易策略来解决这些问题。目的是从一方面开发\能够模仿从业者行为的程序,另一方面能够\击败市场。从这个意义上说,Fernandez-Rodríguez等。 (2005)通过使用遗传算法优化参数值,研究了马德里股票市场总指数的广义移动平均交易规则的收益\ ud。他们得出结论,如果交易成本敢于合理,那么优化的\交易规则将优于风险调整的并购策略。同样,Papadamou&Stephanides(2007)提出了GATradeTool,这是一种基于遗传算法的技术参数交易参数优化工具。在对该软件的描述中,他们在收益稳定性和计算成本方面将其与其他常用的非自适应工具进行了比较。对瑞银基金历史\ uddata的测试结果表明,GATradeTool的表现优于其他工具。费尔南德斯·布兰科\ udet al。 (2008年)提出使用移动平均收敛散度技术指标\ ud通过遗传算法优化其参数来预测股指。道琼斯工业平均指数的实验\结果证实了进化\算法对从业人员采用的经典配置\ ud所采用的改进技术指标的能力。\ ud为股票时机生成技术交易系统的另一种方法是结合\ udmachine学习范例并在Kaucic(2010)中提出了可变长度字符串多目标遗传算法\ udis。通过遗传算法选择最有用的技术指标,并通过学习方法将其组合成唯一的交易信号。在三个市场阶段中,分析了标普500综合指数\ ud与3个月期美国国库券之间的\静态单头自动日交易策略,涵盖了2000-2006年的上升趋势,下降趋势\ udand横盘整理走势。结果表明,接近最优的规则集在各个市场阶段之间有所不同,但呈现出稳定的结果,并且能够\减少或消除下降趋势期间的损失。\ ud作为这些研究的自然结果,进化算法可能构成一个\ udpromise该工具还可用于涉及多于两只股票的投资组合策略。在\ udfofolio选择字段中,经常使用Markowitz和Sharpe模型作为遗传\ udalgorithm优化的任务。例如,Chang等人解决了寻找与标准均值-方差投资组合相关的有效前沿问题。 (2000)。他们通过应用基于遗传算法,禁忌搜索和模拟退火的三种启发式算法,扩展了标准模型以包括基数和组成约束。\ ud提供了涉及多达225个资产的五个数据集的计算结果。\ udWilding(2003)提出基于因子\ udmodel的组合投资组合管理混合过程,允许限制交易和证券的数量。遗传算法负责选择最终解决方案中出现的最佳证券子集,而二次编程程序确定该子集的效用值。实验\ ud显示了这种方法能够生成高度可追踪指数的投资组合的能力。\ udOh等人提出的β-G遗传投资组合算法。 (2006年)基于\其市值选择股票,并根据投资组合β的标准\ uddeviation来优化其权重。该程序的性能取决于市场的波动性,并且趋于\ ud短期应用的出色性能。\ ud我考虑的投资组合管理方法与以前的模型完全不同\ udand基于技术分析。通常,使用技术分析\胆敢的模块化程序进行投资组合优化,其中一个模块采用一组基于技术指标的规则\ udin对市场资产进行分类,而另一个模块则专注于随着时间的推移生成\ udand管理投资组合(对于一个主题的详细介绍,感兴趣的\ udreader可以参考Jasemi等。 (2011))。在这种情况下,一个有趣的应用是由Korczak&Lipinski \ ud(2003)开发的方法,该方法通过利用先前由遗传算法发现的人工交易\ udexperts来优化投资组合结构(请参阅Korczak&Roger(2002年))。 )和\进化策略。该方法已经使用来自Paris Stock \ udExchange的数据进行了测试。通过该算法获得的利润要高于购买和持有\策略的利润。\ ud最近,Ghandar等人。 (2009)描述了两个模块的交互过程,其中遗传算法根据市场条件优化一组模糊技术交易规则,并与基于股票排名和基数约束的投资组合策略进行交互。他们\\介绍了一些绩效指标,以将其投资组合与澳大利亚股票\ udExchange指数进行比较,从而显示出更高的回报和更低的波动性。\ udGorgulho等人开发了另一种多模块方法。 (2011年)\ udaims通过使用通过预算算法优化的技术分析指标来管理金融资产组合。为了验证解决方案,作者比较了在独特的\ udmarket条件下针对市场本身设计的策略,买入和持有策略以及纯粹随机的策略。由于该方法胜过竞争对手,因此结果是有希望的。\ ud如前面的示例所示,技术模块通常相对于管理组件处于\ u从属位置。由于交易成本,基数和构成约束对于重新平衡\目的而言至关重要,因此尚不清楚技术信号对最优投资组合的开发的有效影响。为了强调在投资组合管理中使用技术分析的好处,\ udI提出了另一种遗传优化启发式算法,该算法基于同等加权的零\ ud投资策略,在该策略中,将资金平均分配给多头投资组合的股票\ ud和短头投资的股票一。这样做,交易信号直接影响投资组合\ udconstruction。此外,为了研究\投资组合风险与市场状况变化之间的关系,我根据\ d以风险调整后的指标为目标实现了三种类型的投资组合生成模型。\ ud本章的其余部分安排如下。第2节详细介绍了建议的\ ud方法,重点介绍了投资策略,技术指标的定义和\ ud采用的进化学习算法。第三节介绍了实验结果和讨论。最后,第4节在本章的结尾给出了一些对将来的改进的意见和想法。

著录项

  • 作者

    Massimiliano Kaucic;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号